Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 82
1.
Front Oncol ; 14: 1376622, 2024.
Article En | MEDLINE | ID: mdl-38741774

Introduction: Cancer stem cells (CSCs), a group of tumor-initiating and tumor-maintaining cells, may be major players in the treatment resistance and recurrence distinctive of chordoma. Characterizing CSCs is crucial to better targeting this subpopulation. Methods: Using flow cytometry, six chordoma cell lines were evaluated for CSC composition. In vitro, cell lines were stained for B7H6, HER2, MICA-B, ULBP1, EGFR, and PD-L1 surface markers. Eighteen resected chordomas were stained using a multispectral immunofluorescence (mIF) antibody panel to identify CSCs in vivo. HALO software was used for quantitative CSC density and spatial analysis. Results: In vitro, chordoma CSCs express more B7H6, MICA-B, and ULBP1, assessed by percent positivity and mean fluorescence intensity (MFI), as compared to non-CSCs in all cell lines. PD- L1 percent positivity is increased by >20% in CSCs compared to non-CSCs in all cell lines except CH22. In vivo, CSCs comprise 1.39% of chordoma cells and most are PD-L1+ (75.18%). A spatial analysis suggests that chordoma CSCs cluster at an average distance of 71.51 mm (SD 73.40 mm) from stroma. Discussion: To our knowledge, this study is the first to identify individual chordoma CSCs and describe their surface phenotypes using in vitro and in vivo methods. PD-L1 is overexpressed on CSCs in chordoma human cell lines and operative tumor samples. Similarly, potential immunotherapeutic targets on CSCs, including B7H6, MICA-B, ULBP1, EGFR, and HER2 are overexpressed across cell lines. Targeting these markers may have a preferential role in combating CSCs, an aggressive subpopulation likely consequential to chordoma's high recurrence rate.

2.
Head Neck ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622975

BACKGROUND: Neutrophilic cells are among the most abundant immune populations within the head and neck tumor microenvironment (TME) and harbor multiple mechanisms of immunosuppression. Despite these important features, neutrophilic cells may be underrepresented in contemporary studies that aim to comprehensively characterize the immune landscape of the TME due to discrepancies in tissue processing and analysis techniques. Here, we review the role of pathologically activated neutrophilic cells within the TME and pitfalls of various approaches used to study their frequency and function in clinical samples. METHODS: The literature was identified by searching PubMed for "immune landscape" and "tumor immune microenvironment" in combination with keywords describing solid tumor malignancies. Key publications that assessed the immune composition of solid tumors derived from human specimens were included. The tumor and blood processing methodologies in each study were reviewed in depth and correlated with the reported abundance of neutrophilic cells. RESULTS: Neutrophilic cells do not survive cryopreservation, and many studies fail to identify and study neutrophilic cell populations due to cryopreservation of clinical samples for practical reasons. Additional single-cell transcriptomic studies filter out neutrophilic cells due to low transcriptional counts. CONCLUSIONS: This report can help readers critically interpret studies aiming to comprehensively study the immune TME that fail to identify and characterize neutrophilic cells.

3.
Cancer Med ; 13(7): e7146, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581118

BACKGROUND: De-escalation strategies for newly-diagnosed p16-positive oropharyngeal squamous cell carcinoma (p16+ OPSCC), aim to reduce treatment-related morbidity without compromising disease control. One strategy is neoadjuvant cisplatin and docetaxel chemotherapy (NAC + S) before transoral robotic surgery, with pathology-based risk-adapted adjuvant treatment. METHODS: We examined the recurrence-free survival (RFS) for patients who received NAC + S. RESULTS: Comparing outcomes in 103 patients between 2008 and 2023, 92% avoided adjuvant treatment and showed significantly higher 2-year recurrence-free survival (RFS) compared to those with adjuvant treatment (95.9% vs. 43.8%, p = 0.0049) CONCLUSION: Our findings suggest that pathology-based risk-adapted omission of adjuvant treatment following NAC + S does not appear to elevate recurrence risk and that NAC may identify patients with favorable tumor biology, yielding a 2-year RFS probability exceeding 95% without adjuvant treatment. Further, the study identifies a patient subset experiencing disease recurrence despite triple modality therapy. Despite limitations, including a retrospective design and modest sample size, the data advocate for controlled NAC + S studies.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Robotic Surgical Procedures , Humans , Neoadjuvant Therapy , Retrospective Studies , Robotic Surgical Procedures/adverse effects , Carcinoma, Squamous Cell/surgery , Neoplasm Recurrence, Local/prevention & control , Oropharyngeal Neoplasms/surgery , Chemotherapy, Adjuvant , Head and Neck Neoplasms/etiology
4.
Laryngoscope ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38436434

OBJECTIVES: To characterize the distribution of immune cell subsets within laryngeal papillomas and to study the function of potentially immunosuppressive neutrophilic and regulatory T cells (Tregs). METHODS: Fresh clinical papilloma specimens were collected at the time of surgery and studied with multiparameter flow cytometry. Papilloma infiltrating neutrophilic cells and Tregs were sorted and studied functionally with ex vivo T cell suppression assays. RESULTS: Flow cytometric analysis of fresh laryngeal papillomas samples from 18 adult patients with recurrent respiratory papillomatosis revealed patterns in immune constituency between patients. Clearly divergent phenotypes based primarily on the degree of neutrophilic and T cell infiltration were identified. Relative neutrophilic cell enrichment and T cell depletion were observed in 50% of samples and neutrophilic cell depletion and T cell enrichment were observed in the others. Greater papilloma neutrophilic cell enrichment was positively associated with the number of clinically indicated interventions required in the 12 months prior to sample collection, linking papilloma neutrophil inflammation to disease severity. Functional assays revealed the ability of both papilloma infiltrating neutrophilic and Tregs to suppress T cell function at roughly equal magnitudes, but substantially increased infiltration of neutrophilic cells compared to Tregs across samples. CONCLUSION: Neutrophilic cells are an important contributor to immunosuppression within the respiratory papilloma microenvironment. Given these data and the association between greater neutrophilic cell infiltration and lack of clinical response to therapeutic vaccination, additional study of strategies aimed at limiting neutrophilic cell infiltration or function within papillomas is warranted. LEVEL OF EVIDENCE: 4 Laryngoscope, 2024.

5.
Oral Oncol ; 150: 106705, 2024 Mar.
Article En | MEDLINE | ID: mdl-38280289

OBJECTIVES: Tumor infiltrating neutrophils suppress T cell function, but whether neutrophils in circulation contribute to systemic immunosuppression is unclear. We aimed to study whether peripheral neutrophils that accumulate with tumor progression contribute to systemic immunosuppression, and if observed suppression of systemic anti-tumor immunity could be reversed with complete surgical tumor removal. MATERIALS AND METHODS: Syngeneic murine oral cancers were established in immunocompetent mice. Proteomic and functional immune assays were used to study plasma cytokine concentration, peripheral immune frequencies, and systemic anti-tumor immunity with and without complete primary tumor resection. RESULTS: Ly6G+ neutrophilic cells, but not other myeloid cell types, accumulated in the periphery of mice with progressing tumors. This accumulation positively associated with plasma G-CSF concentration. Circulating neutrophils were functionally immunosuppressive. Complete surgical tumor removal reversed the observed neutrophilia, with neutrophil frequencies returning to baseline in 21 days. Multiple independent functional assays revealed enhanced systemic anti-tumor immunity in mice following tumor resection compared to tumor-bearing mice, and the observed enhanced systemic immunity could be reproduced with selective neutrophil depletion. CONCLUSIONS: Complete primary tumor resection can reverse neutrophilia that develops during tumor progression and result in enhanced systemic anti-tumor immunity. Primary tumor removal relieves neutrophil-driven systemic immunosuppression and may itself contribute to the clinical benefit observed with neoadjuvant immunotherapy.


Immunosuppression Therapy , Proteomics , Animals , Mice , Cell Line, Tumor , Immunotherapy , Immune Tolerance , Tumor Microenvironment
6.
Sci Transl Med ; 15(719): eadj0740, 2023 10 25.
Article En | MEDLINE | ID: mdl-37878675

Recurrent respiratory papillomatosis (RRP) is a rare, debilitating neoplastic disorder caused by chronic infection with human papillomavirus (HPV) type 6 or 11 and characterized by growth of papillomas in the upper aerodigestive tract. There is no approved medical therapy, and patients require repeated debulking procedures to maintain voice and airway function. PRGN-2012 is a gorilla adenovirus immune-therapeutic capable of enhancing HPV 6/11-specific T cell immunity. This first-in-human, phase 1 study (NCT04724980) of adjuvant PRGN-2012 treatment in adult patients with severe, aggressive RRP demonstrates the overall safety and clinically meaningful benefit observed with PRGN-2012, with a 50% complete response rate in patients treated at the highest dose. Responders demonstrate greater expansion of peripheral HPV-specific T cells compared with nonresponders. Additional correlative studies identify an association between reduced baseline papilloma HPV gene expression, greater interferon responses and expression of CXCL9 and CXCL10, and greater papilloma T cell infiltration in responders. Conversely, nonresponders were characterized by greater HPV and CXCL8 gene expression, increased neutrophilic cell infiltration, and reduced T cell papilloma infiltration. These results suggest that papilloma HPV gene expression may regulate interferon signaling and chemokine expression profiles within the tumor microenvironment that cooperate to govern clinical response to therapeutic HPV vaccination in patients with respiratory papillomatosis.


Papilloma , Papillomavirus Infections , Respiratory Tract Infections , Adult , Humans , Papillomavirus Infections/therapy , Papillomavirus Infections/pathology , Tumor Microenvironment , Respiratory Tract Infections/therapy , Interferons , Papilloma/therapy , Papilloma/pathology , Vaccination
7.
Oral Oncol ; 146: 106570, 2023 11.
Article En | MEDLINE | ID: mdl-37738775

INTRODUCTION: Resident memory T (TRM) cells are embedded in peripheral tissue and capable of acting as sentinels that can respond quickly to repeat pathogen exposure as part of an endogenous anti-microbial immune response. Recent evidence suggests that chronic antigen exposure and other microenvironment cues may promote the development of TRM cells within solid tumors as well, and that this TRM phenotype can sequester tumor-specific T cells into tumors and out of circulation resulting in limited systemic antitumor immunity. Here, we perform a review of the published English literature and describe tissue-specific mediators of TRM cell differentiation in states of infection and malignancy with special focus on the role of TGF-ß and how targeting TGF-ß signaling could be used as a therapeutical approach to promote tumor systemic immunity. DISCUSSION: The presence of TRM cells with antigen specificity to neoepitopes in tumors associates with positive clinical prognosis and greater responsiveness to immunotherapy. Recent evidence indicates that solid tumors may act as reservoirs for tumor specific TRM cells and limit their circulation - possibly resulting in impaired systemic antitumor immunity. TRM cells utilize specific mechanisms to egress from peripheral tissues into circulation and other peripheral sites, and emerging evidence indicates that immunotherapeutic approaches may initiate these processes and increase systemic antitumor immunity. CONCLUSIONS: Reversing tumor sequestration of tumor-specific T cells prior to surgical removal or radiation of tumor may increase systemic antitumor immunity. This finding may underlie the improved recurrence free survival observed with neoadjuvant immunotherapy in clinical trials.


Immunologic Memory , Neoplasms , Humans , Memory T Cells , Neoadjuvant Therapy , Immunotherapy , Neoplasms/therapy , Transforming Growth Factor beta , Tumor Microenvironment
8.
Front Immunol ; 14: 1200970, 2023.
Article En | MEDLINE | ID: mdl-37638000

Introduction: Amplification of human chromosome 3q26-29, which encodes oncoprotein ΔNp63 among other isoforms of the p63 family, is a feature common to squamous cell carcinomas (SCCs) of multiple tissue origins. Along with overexpression of ΔNp63, activation of the protooncogene, RAS, whether by overexpression or oncogenic mutation, is frequently observed in many cancers. In this study, analysis of transcriptome data from The Cancer Genome Atlas (TCGA) demonstrated that expression of TP63 mRNA, particularly ΔNp63 isoforms, and HRAS are significantly elevated in advanced squamous cell carcinomas of the head and neck (HNSCCs), suggesting pathological significance. However, how co-overexpressed ΔNp63 and HRAS affect the immunosuppressive tumor microenvironment (TME) is incompletely understood. Methods: Here, we established and characterized an immune competent mouse model using primary keratinocytes with retroviral-mediated overexpression of ΔNp63α and constitutively activated HRAS (v-rasHa G12R) to evaluate the role of these oncogenes in the immune TME. Results: In this model, orthotopic grafting of wildtype syngeneic keratinocytes expressing both v-rasHa and elevated levels of ΔNp63α consistently yield carcinomas in syngeneic hosts, while cells expressing v-rasHa alone yield predominantly papillomas. We found that polymorphonuclear (PMN) myeloid cells, experimentally validated to be immunosuppressive and thus representing myeloid-derived suppressor cells (PMN-MDSCs), were significantly recruited into the TME of carcinomas arising early following orthotopic grafting of ΔNp63α/v-rasHa-expressing keratinocytes. ΔNp63α/v-rasHa-driven carcinomas expressed higher levels of chemokines implicated in recruitment of MDSCs compared to v-rasHa-initiated tumors, providing a heretofore undescribed link between ΔNp63α/HRAS-driven carcinomas and the development of an immunosuppressive TME. Conclusion: These results support the utilization of a genetic carcinogenesis model harboring specific genomic drivers of malignancy to study mechanisms underlying the development of local immunosuppression.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Animals , Mice , Carcinoma, Squamous Cell/genetics , Immunosuppressive Agents , Squamous Cell Carcinoma of Head and Neck , Disease Models, Animal , Tumor Microenvironment/genetics
9.
Head Neck ; 45(9): 2294-2302, 2023 09.
Article En | MEDLINE | ID: mdl-37480219

BACKGROUND: Treatment of patients with newly diagnosed HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) with neoadjuvant chemotherapy (NAC) results in a high rate of 5-year recurrence free survival with few patients requiring adjuvant treatment. We hypothesized that NAC enhances primary tumor HPV-specific T cell responses. METHODS: HPV-specific responses in tumor infiltrating lymphocytes (TILs) before and after NAC were determined using autologous co-culture assays. RESULTS: Greater HPV16-specific TIL responses, sometimes polyclonal, were observed after NAC compared to before in 8 of 10 patients (80%) with PCR-verified HPV16-positive tumors. A significant association was observed between net-negative change in HPV-specific TIL response and disease relapse (p = 0.04, Mann-Whitney test), whereas pathologic complete response at time of surgery did not correlate with recurrence. CONCLUSIONS: NAC induces HPV-specific tumor T cell responses in patients with newly diagnosed HPV-associated OPSCC; whereas lack of an increase following NAC may associate with risk of relapse.


Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , T-Lymphocytes , Prognosis , Neoadjuvant Therapy/methods , Papillomavirus Infections/complications , Neoplasm Recurrence, Local , Oropharyngeal Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/complications , Head and Neck Neoplasms/complications
10.
Cell Rep ; 42(7): 112823, 2023 07 25.
Article En | MEDLINE | ID: mdl-37463106

Cancers often display immune escape, but the mechanisms are incompletely understood. Herein, we identify SMYD3 as a mediator of immune escape in human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC), an aggressive disease with poor response to immunotherapy with pembrolizumab. SMYD3 depletion induces upregulation of multiple type I interferon (IFN) response and antigen presentation machinery genes in HNSCC cells. Mechanistically, SMYD3 binds to and regulates the transcription of UHRF1, encoding for a reader of H3K9me3, which binds to H3K9me3-enriched promoters of key immune-related genes, recruits DNMT1, and silences their expression. SMYD3 further maintains the repression of immune-related genes through intragenic deposition of H4K20me3. In vivo, Smyd3 depletion induces influx of CD8+ T cells and increases sensitivity to anti-programmed death 1 (PD-1) therapy. SMYD3 overexpression is associated with decreased CD8 T cell infiltration and poor response to neoadjuvant pembrolizumab. These data support combining SMYD3 depletion strategies with checkpoint blockade to overcome anti-PD-1 resistance in HPV-negative HNSCC.


Head and Neck Neoplasms , Histone-Lysine N-Methyltransferase , Interferon Type I , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck , Humans , CCAAT-Enhancer-Binding Proteins , CD8-Positive T-Lymphocytes , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Histone-Lysine N-Methyltransferase/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Ubiquitin-Protein Ligases
12.
Cell Death Differ ; 30(5): 1382-1396, 2023 05.
Article En | MEDLINE | ID: mdl-37055579

TNFα is a key mediator of immune, chemotherapy and radiotherapy-induced cytotoxicity, but several cancers, including head and neck squamous cell carcinomas (HNSCC), display resistance to TNFα due to activation of the canonical NFκB pro-survival pathway. However, direct targeting of this pathway is associated with significant toxicity; thus, it is vital to identify novel mechanism(s) contributing to NFκB activation and TNFα resistance in cancer cells. Here, we demonstrate that the expression of proteasome-associated deubiquitinase USP14 is significantly increased in HNSCC and correlates with worse progression free survival in Human Papillomavirus (HPV)- HNSCC. Inhibition or depletion of USP14 inhibited the proliferation and survival of HNSCC cells. Further, USP14 inhibition reduced both basal and TNFα-inducible NFκB activity, NFκB-dependent gene expression and the nuclear translocation of the NFκB subunit RELA. Mechanistically, USP14 bound to both RELA and IκBα and reduced IκBα K48-ubiquitination leading to the degradation of IκBα, a critical inhibitor of the canonical NFκB pathway. Furthermore, we demonstrated that b-AP15, an inhibitor of USP14 and UCHL5, sensitized HNSCC cells to TNFα-mediated cell death, as well as radiation-induced cell death in vitro. Finally, b-AP15 delayed tumor growth and enhanced survival, both as a monotherapy and in combination with radiation, in HNSCC tumor xenograft models in vivo, which could be significantly attenuated by TNFα depletion. These data offer new insights into the activation of NFκB signaling in HNSCC and demonstrate that small molecule inhibitors targeting the ubiquitin pathway warrant further investigation as a novel therapeutic avenue to sensitize these cancers to TNFα- and radiation-induced cytotoxicity.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , NF-KappaB Inhibitor alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/genetics , Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , NF-kappa B , Cell Death , Cell Line, Tumor , Ubiquitin Thiolesterase/genetics
13.
Cancer Cell ; 41(5): 887-902.e5, 2023 05 08.
Article En | MEDLINE | ID: mdl-37059104

Neoadjuvant immunotherapies (NITs) have led to clinical benefits in several cancers. Characterization of the molecular mechanisms underlying responses to NIT may lead to improved treatment strategies. Here we show that exhausted, tumor-infiltrating CD8+ T (Tex) cells display local and systemic responses to concurrent neoadjuvant TGF-ß and PD-L1 blockade. NIT induces a significant and selective increase in circulating Tex cells associated with reduced intratumoral expression of the tissue-retention marker CD103. TGF-ß-driven CD103 expression on CD8+ T cells is reversed following TGF-ß neutralization in vitro, implicating TGF-ß in T cell tissue retention and impaired systemic immunity. Transcriptional changes implicate T cell receptor signaling and glutamine metabolism as important determinants of enhanced or reduced Tex treatment response, respectively. Our analysis illustrates physiological and metabolic changes underlying T cell responses to NIT, highlighting the interplay between immunosuppression, tissue retention, and systemic anti-tumor immunity and suggest antagonism of T cell tissue retention as a promising neoadjuvant treatment strategy.


CD8-Positive T-Lymphocytes , Head and Neck Neoplasms , Humans , Neoadjuvant Therapy , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/metabolism , Immunotherapy , Transforming Growth Factor beta/metabolism , Adaptation, Physiological , Lymphocytes, Tumor-Infiltrating
14.
Cancers (Basel) ; 15(4)2023 Feb 06.
Article En | MEDLINE | ID: mdl-36831373

Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due to activation of the canonical IKK-NFκB/RELA pathway, which is activated by, and induces expression of, cellular inhibitors of apoptosis proteins (cIAPs). Our previous studies have demonstrated that the IAP inhibitor birinapant sensitized HNSCC to TNFα-dependent cell death in vitro and radiotherapy in vivo. Furthermore, we recently demonstrated that the inhibition of the G2/M checkpoint kinase WEE1 also sensitized HNSCC cells to TNFα-dependent cell death, due to the inhibition of the pro-survival IKK-NFκB/RELA complex. Given these observations, we hypothesized that dual-antagonist therapy targeting both IAP and WEE1 proteins may have the potential to synergistically sensitize HNSCC to TNFα-dependent cell death. Using the IAP inhibitor birinapant and the WEE1 inhibitor AZD1775, we show that combination treatment reduced cell viability, proliferation and survival when compared with individual treatment. Furthermore, combination treatment enhanced the sensitivity of HNSCC cells to TNFα-induced cytotoxicity via the induction of apoptosis and DNA damage. Additionally, birinapant and AZD1775 combination treatment decreased cell proliferation and survival in combination with radiotherapy, a critical source of TNFα. These results support further investigation of IAP and WEE1 inhibitor combinations in preclinical and clinical studies in HNSCC.

15.
JAMA Otolaryngol Head Neck Surg ; 149(3): 280-281, 2023 03 01.
Article En | MEDLINE | ID: mdl-36729450

A 69-year-old woman with a newly diagnosed squamous cell carcinoma of the lower lip mucosa presented 3 days after initiating neoadjuvant immune checkpoint blockade immunotherapy with redness and swelling of the tumor site. What is your diagnosis?


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Lip Neoplasms , Humans , Lip/pathology , Carcinoma, Squamous Cell/complications , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , Lip Neoplasms/surgery , Lip Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , Drainage
16.
Oral Oncol ; 138: 106309, 2023 03.
Article En | MEDLINE | ID: mdl-36682187

OBJECTIVES: Biomarkers are needed to identify patients likely to respond to neoadjuvant immunotherapy (NIT) prior to receiving definitive treatment. MATERIALS AND METHODS: We hypothesized that expression of tumor cell HLA class I would correlate with pathologic response (PR) following NIT for primary untreated head and neck cancer. Multispectral immunofluorescence of pre- and post-treatment biopsy specimens from a neoadjuvant study of bintrafusp alfa, a dual TGF-ß and PD-L1 inhibitor, was performed. RESULTS: Discordant expression of tumor cell HLA class I and PD-L1 measured by multispectral immunofluorescence was observed with most positive tumor cells expressing HLA class I or PD-L1 but not both. Spatial analysis revealed colocalization between tumor parenchyma T cells and HLA class I positive tumors cells, but no clear colocalization between T cells and PD-L1 positive tumor cells. Greater pre-treatment tumor cell HLA class I expression, but not PD-L1 expression or tumor T cell infiltration, correlated with the development of a PR. Additionally, increased tumor cell HLA class I expression after NIT compared to before NIT correlated with development of a PR, whereas inconsistent changes in PD-L1 and T cell infiltration were observed after treatment in all patients. CONCLUSIONS: These data provide the rationale for the study of tumor cell HLA class I expression in larger prospective studies powered to determine the performance of biomarkers of PR in newly diagnosed HNSCC patients receiving NIT.


Head and Neck Neoplasms , Histocompatibility Antigens Class I , Humans , Neoadjuvant Therapy , Prospective Studies , Biomarkers , Immunotherapy , B7-H1 Antigen/metabolism
17.
J Immunother Cancer ; 10(12)2022 12.
Article En | MEDLINE | ID: mdl-36564129

BACKGROUND: While radiation and chemotherapy are primarily purposed for their cytotoxic effects, a growing body of preclinical and clinical evidence demonstrates an immunogenic potential for these standard therapies. Accordingly, we sought to characterize the immunogenic potential of radiation and cisplatin in human tumor models of HPV-associated malignancies. These studies may inform rational combination immuno-oncology (IO) strategies to be employed in the clinic on the backbone of standard of care, and in so doing exploit the immunogenic potential of standard of care to improve durable responses in HPV-associated malignancies. METHODS: Retroviral transduction with HPV16 E7 established a novel HPV-associated sinonasal squamous cell carcinoma (SNSCC) cell line. Three established HPV16-positive cell lines were also studied (cervical carcinoma and head and neck squamous cell carcinoma). Following determination of sensitivities to standard therapies using MTT assays, flow cytometry was used to characterize induction of immunogenic cell stress following sublethal exposure to radiation or cisplatin, and the functional consequence of this induction was determined using impedance-based real time cell analysis cytotoxicity assays employing HPV16 E7-specific cytotoxic lymphocytes (CTLs) with or without N803 (IL-15/IL-15-Rα superagonist) or exogenous death receptor ligands. In vitro observations were translated using an in vivo xenograft NSG mouse model of human cervical carcinoma evaluating cisplatin in combination with CTL adoptive cell transfer. RESULTS: We showed that subpopulations surviving clinically relevant doses of radiation or cisplatin therapy were more susceptible to CTL-mediated lysis in four of four tumor models of HPV-associated malignancies, serving as a model for HPV therapeutic vaccine or T-cell receptor adoptive cell transfer. This increased killing was further amplified by IL-15 agonism employing N803. We further characterized that radiation or cisplatin induced immunogenic cell stress in three of three cell lines, and consequently demonstrated that upregulated surface expression of Fas and TRAIL-R2 death receptors at least in part mediated enhanced CTL-mediated lysis. In vivo, cisplatin-induced immunogenic cell stress synergistically potentiated CTL-mediated tumor control in a human model of HPV-associated malignancy. CONCLUSION: Standard of care radiation or cisplatin therapy induced immunogenic cell stress in preclinical models of HPV-associated malignancies, presenting an opportunity poised for exploitation by employing IO strategies in combination with standard of care.


Antineoplastic Agents , Carcinoma , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Interleukin-15/pharmacology , T-Lymphocytes, Cytotoxic , Papillomavirus Infections/complications , Standard of Care , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Uterine Cervical Neoplasms/drug therapy
18.
Front Oncol ; 12: 1012058, 2022.
Article En | MEDLINE | ID: mdl-36338744

Background: Chordoma is a rare, invasive, and devastating bone malignancy of residual notochord tissue that arises at the skull base, sacrum, or spine. In order to maximize immunotherapeutic approaches as a potential treatment strategy in chordoma it is important to fully characterize the tumor immune microenvironment (TIME). Multispectral immunofluorescence (MIF) allows for comprehensive evaluation of tumor compartments, molecular co-expression, and immune cell spatial relationships. Here we implement MIF to define the myeloid, T cell, and natural killer (NK) cell compartments in an effort to guide rational design of immunotherapeutic strategies for chordoma. Methods: Chordoma tumor tissue from 57 patients was evaluated using MIF. Three panels were validated to assess myeloid cell, T cell, and NK cell populations. Slides were stained using an automated system and HALO software objective analysis was utilized for quantitative immune cell density and spatial comparisons between tumor and stroma compartments. Results: Chordoma TIME analysis revealed macrophage infiltration of the tumor parenchyma at a significantly higher density than stroma. In contrast, helper T cells, cytotoxic T cells, and T regulatory cells were significantly more abundant in stroma versus tumor. T cell compartment infiltration more commonly demonstrated a tumor parenchymal exclusion pattern, most markedly among cytotoxic T cells. NK cells were sparsely found within the chordoma TIME and few were in an activated state. No immune composition differences were seen in chordomas originating from diverse anatomic sites or between those resected at primary versus advanced disease stage. Conclusion: This is the first comprehensive evaluation of the chordoma TIME including myeloid, T cell, and NK cell appraisal using MIF. Our findings demonstrate that myeloid cells significantly infiltrate chordoma tumor parenchyma while T cells tend to be tumor parenchymal excluded with high stromal infiltration. On average, myeloid cells are found nearer to target tumor cells than T cells, potentially resulting in restriction of T effector cell function. This study suggests that future immunotherapy combinations for chordoma should be aimed at decreasing myeloid cell suppressive function while enhancing cytotoxic T cell and NK cell killing.

19.
Adv Biol (Weinh) ; 6(9): e2200190, 2022 09.
Article En | MEDLINE | ID: mdl-35925599

Oral squamous cell carcinoma (OSCC) patients suffer from poor survival due to metastasis or locoregional recurrence, processes that are both facilitated by perineural invasion (PNI). OSCC has higher rates of PNI than other cancer subtypes, with PNI present in 80% of tumors. Despite the impact of PNI on oral cancer prognosis and pain, little is known about the genes that drive PNI, which in turn drive pain, invasion, and metastasis. In this study, clinical data, preclinical, and in vitro models are leveraged to elucidate the role of neurotrophins in OSCC metastasis, PNI, and pain. The expression data in OSCC patients with metastasis, PNI, or pain demonstrate dysregulation of neurotrophin genes. TrkA and nerve growth factor receptor (NGFR) are focused, two receptors that are activated by NGF, a neurotrophin expressed at high levels in OSCC. It is demonstrated that targeted knockdown of these two receptors inhibits proliferation and invasion in an in vitro and preclinical model of OSCC, and metastasis, PNI, and pain. It is further determined that TrkA knockdown alone inhibits thermal hyperalgesia, whereas NGFR knockdown alone inhibits mechanical allodynia. Collectively the results highlight the ability of OSCC to co-opt different components of the neurotrophin pathway in metastasis, PNI, and pain.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Carcinoma, Squamous Cell/genetics , Humans , Mouth Neoplasms/genetics , Neoplasm Invasiveness/genetics , Neoplasm Recurrence, Local , Neoplastic Processes , Nerve Growth Factors , Nerve Tissue Proteins , Pain , Receptor Protein-Tyrosine Kinases , Receptor, Nerve Growth Factor , Receptor, trkA , Receptors, Nerve Growth Factor/genetics , Squamous Cell Carcinoma of Head and Neck
20.
Head Neck ; 44(10): E31-E37, 2022 10.
Article En | MEDLINE | ID: mdl-35815785

BACKGROUND: Immune checkpoint blockade can provide clinical benefit for patients with advanced cancer. Here, we report durable disease control over many years following PD-L1 blockade through induction of a viral antigen-specific T cell response in an adult patient with recurrent respiratory papillomatosis. METHODS: Antigen-specific T cell response assays, single cell RNA-sequencing, and RNA-scope was used to study clinical tissues. RESULTS: An HPV6 E2-specific T cell clone restricted to HLA-B*55, present at low frequency in the pre-treatment papilloma, significantly expanded after six doses of PD-L1 blockade and remained present and functional at the site of initial response in the larynx as a tissue resident memory T cell for 4 years. An associated reduction in E2 target gene was observed following treatment. CONCLUSIONS: Although demonstrated in a single exceptional responder, these results highlight that immune checkpoint blockade may induce durable, viral antigen-specific immunity of sufficient magnitude to control disease in patients with nonmalignant disorders.


B7-H1 Antigen , Papilloma , Adult , Antigens, Viral , Humans , Immune Checkpoint Inhibitors , Papillomavirus Infections , RNA , Respiratory Tract Infections
...